Events

Syndicate content
Upcoming Events
Updated: 11 min 23 sec ago

Berkeley Distinguished Lectures in Data Science, Sep 26

11 min 23 sec ago
The rapid growth in the size and scope of datasets in science and technology has created a need for novel foundational perspectives on data analysis that blend the inferential and computational sciences. That classical perspectives from these fields are not adequate to address emerging problems in Data Science is apparent from their sharply divergent nature at an elementary level---in computer science, the growth of the number of data points is a source of "complexity" that must be tamed via algorithms or hardware, whereas in statistics, the growth of the number of data points is a source of "simplicity" in that inferences are generally stronger and asymptotic results can be invoked. On a formal level, the gap is made evident by the lack of a role for computational concepts such as "runtime" in core statistical theory and the lack of a role for statistical concepts such as "risk" in core computational theory. I present several research vignettes aimed at bridging computation and statistics, including the problem of inference under privacy and communication constraints, and including a surprising cameo role for symplectic geometry.

The Berkeley Distinguished Lectures in Data Science, co-hosted by the Berkeley Institute for Data Science (BIDS) and the Berkeley Division of Data Sciences, features faculty doing visionary research that illustrates the character of the ongoing data, computational, inferential revolution. In this inaugural Fall 2017 "local edition," we bring forward Berkeley faculty working in these areas as part of enriching the active connections among colleagues campus-wide. All campus community members are welcome and encouraged to attend. Arrive at 3:30pm for tea, coffee, and discussion.

GraphXD Seminar, Sep 28

11 min 23 sec ago
One of the greatest advantages of representing data with graphs is access to generic algorithms for analytic tasks, such as clustering. In this talk I will describe some popular graph clustering algorithms, and explain why they are well-motivated from a theoretical perspective.

Berkeley China Summit 2017, Oct 8

11 min 23 sec ago
Organized and sponsored by official UC Berkeley alumni and students organizations, endorsed and supported by UC Berkeley administration, the only authentic Berkeley China Summit 伯克利中美峰会 (“BCS”) is a full-day on-campus conference, aimed to connect China’s businesses and investors with the technology, engineering, and business innovation expertise on UC Berkeley campus and across the Bay Area.

The 2017 BCS theme “Technologies & Innovations that Build the Future” focuses on the state-of-art technologies and innovations that will define and build the future of human beings, and for which US, especially Berkeley, and China will be the main players and beneficiaries. Topics covered: Artificial Intelligence, Self-driving Car, Fin-tech, and Quantum Computing.

GraphXD Seminar, Oct 19

11 min 23 sec ago
Many important properties of an undirected graph manifest themselves spectrally in the eigenvalues or quadratic forms of matrices related to the graph. For instance, the connectivity structure, electrical properties, and random walk behavior of a graph are determined by its Laplacian matrix. A spectral sparsifier of a graph G is a sparse graph H on the same set of vertices such that the Laplacians of H and G are close, so that H captures the spectral behavior of G while being much cheaper to store and perform computations on. We survey a line of work showing that spectral sparsifiers with constant degree exist for every graph and can be computed efficiently.

Dependence and Precarity in the "Sharing" Economy, Nov 16

11 min 23 sec ago
The sharing economy debuted to grand claims about its ability to change the world for the good--it would encourage social connection, use assets more efficiently, and be better for the environment. For earners on platforms, it promised flexibility, freedom and the ability to become a "micro-entrepreneur." Ten years in, the reality is far more complex. In this talk, Schor discusses her interview-based research with workers on six platforms, and argues that contrary to the expectations of both boosters and critics, outcomes are highly diverse, and depend to a large extent on workers' non-platform economic situations. The discussion will be moderated by Annette Bernhardt from the UC Berkeley Labor Center and Professor Ruth Collier from the UC Berkeley Political Science Department, and will be followed by a reception.

Please register to secure your spot.

Juliet Schor is a sociologist at Boston College. Her work focuses on consumer society, sustainable consumption, new economies, and overwork. A former Guggenheim Fellow, she has served as a consultant to the United Nations.

Ruth Berins Collier teaches political science at UC Berkeley. Her research, across Latin America, Africa, and Europe, has focused on popular participation, political regime change, and labor politics.

Annette Bernhardt directs the Low-Wage Work Program at IRLE’s Labor Center. She focuses on domestic outsourcing, the gig economy, and the impact of new technologies on low-wage work.

TE-29 California Traffic Engineering License Exam Review, thru Oct 11

11 min 23 sec ago
This twelve-session live-online training course is intended to help transportation engineers prepare for the California Traffic Engineer exam to become a professional Traffic Engineer in California. The course includes a set of sample problems for each session with fully developed solutions to give examinees more opportunity to hone in their test-taking skills. The twelve sessions are designed to cover the topics identified on the TRAFFIC ENGINEER EXAMINATION CONTENT OUTLINE on the California Board for Professional Engineers, Land Surveyors, and Geologists website. It provides strategies and techniques needed to manage time and solve exam questions under pressure, and apply required manuals, handbooks and references, such as California Manual of Uniform Traffic Control Devices (CA MUTCD 2014), Highway Capacity Manual (HCM), Caltrans Traffic Manual, ITE Trip Generation Handbook and ITE Parking Generation Handbook to solve traffic engineering problems.
Throughout the course, practice exam problems and solutions covering all three main areas of traffic engineering-planning, operations, and design-are used. The course is taught by a team of expert practicing traffic engineers. We will be using our an online learning management system (LMS). The LMS allows ongoing online communication with the expert instructors throughout the training. Students will be given problem sets to work on in between online training sessions, which can be submitted online via the LMS.

Bay Area Transportation 2050: Systems change in action, Oct 6

11 min 23 sec ago
Regional transportation planning is an art and not a science. SPUR, the Bay Area’s leading urban planning organization, has embarked on a Regional Strategy to answer the big planning questions facing the Bay Area through 2050. While transportation models and heuristics are commonly used to estimate future mobility needs, urban systems in the United States are actually shaped by a complex interaction of urban planning, public policy, and politics -- which are overlaid on history and our own narratives. SPUR’s future transportation research process will test the limits of what can be known through typical planning tools and what must be determined through strategic visioning and social movements. This talk will discuss SPUR’s ambitious Regional Strategy project, theory of change, and transportation research and visioning process.

Designing Automated Vehicles to Avoid Collisions (and Make Good Decisions When They Can’t), Oct 13

11 min 23 sec ago
Automated vehicles provide an unparalleled opportunity to reduce the approximately 35,000 fatalities that occur each year on US roads. With the ability to sense 360 degrees around the vehicle, avoid distraction, and react within milliseconds, automated vehicles possess some inherent advantages over human drivers when it comes to avoiding collisions. To realize this potential, however, the cars must be explicitly designed to make full use of these advantages when designing and executing maneuvers.

For inspiration, we have been studying race car drivers, who are able to routinely handle cars safely at the very limits of their handling capabilities. By working with expert drivers and measuring their performance on the track, we have developed automated vehicles capable of lapping a track in less time than a champion amateur driver and drifting through courses with a precision exceeding human capability. More importantly, these interactions with the best human drivers have helped us to reframe the control challenges associated with racing in a way that opens up new possibilities for safety on the road.

Even with driving capability at the level of the best human drivers, not all collisions are avoidable, due to laws of physics and the somewhat unpredictable actions of human road-users. Automated vehicles must be explicitly designed for these cases as well, requiring engineers to consider not only technical feasibility but also ethical frameworks for decision-making. The talk will conclude with a look at possible approaches to handling dilemma situations and why the popular “Trolley Car Problem” creates unnecessary fear and complication by asking the wrong question.

Chris Gerdes is a Professor of Mechanical Engineering and, by courtesy, of Aeronautics and Astronautics at Stanford University. His laboratory studies how cars move, how humans drive cars, and how to design future cars that work cooperatively with the driver or drive themselves. When not teaching on campus, he can often be found at the racetrack with students, instrumenting historic race cars or trying out their latest prototypes for the future. Vehicles in the lab include X1, an entirely student-built test vehicle; Shelley, an automated Audi TT-S that can lap a racetrack as quickly as an expert driver; and MARTY, an electrified DeLorean capable of controlled drifts. Chris and his team have been recognized with a number of awards including the Presidential Early Career Award for Scientists and Engineers, the Ralph Teetor award from SAE International and the Rudolf Kalman Award from the American Society of Mechanical Engineers.
From February 2016 to January 2017, Chris served as the first Chief Innovation Officer at the United States Department of Transportation. In this role, he worked with Secretary Anthony Foxx to foster the culture of innovation across the department and find ways to support transportation innovation taking place both inside and outside of government. He was part of the team that developed the Federal Automated Vehicles Policy and represented the Department on the National Science and Technology Committee Subcommittee on Machine Learning and Artificial Intelligence. He continues to serve U.S. DOT as Vice Chair of the Federal Advisory Committee on Automation in Transportation.
Chris is a co-founder of truck platooning company Peloton Technology and served as Peloton’s Principal Scientist before joining U.S. DOT.

FlexPass: Incentives for reducing employee parking, Oct 20

11 min 23 sec ago
Most employers offer free or underpriced parking to employees even as they feel the pressure to reduce the number of employees driving alone to work. The FlexPass study is a parking incentive program that avoids employee discontent. We conducted a two-phase study during the year of 2015 and 2016, the FlexPass and FlexPass-Plus study.

The FlexPass study explores a new kind of employee parking permit, the FlexPass, that incentivizes employees to reduce parking. Most employees of the University of California, Berkeley buy a monthly parking permit with pre-tax dollars. The FlexPass is the same, but then refunds this money to the employee in proportion to the number of working days not parked each month. The causal power of this new parking commodity is revealed by a randomized controlled trial. The trial has built a smartphone app that collects longitudinal daily parking usage and location data from each employee. We find that the FlexPass treatment reduced employee parking demand by a barely significant effect of 4.2%. The reductions have required refunds of $27 per employee over a 3 month period. We find that unbundling a monthly employee parking permit reduces parking by making employees mindful of daily parking usage.

The question then arises: what will be the treatment effect if incentives are provided at higher level, and what is the optimal rebate value to achieve certain operation goals? To understand the value of parking and explore various incentive levels, we designed the FlexPass-Plus study. In the FlexPass-Plus study, subjects enter their willingness to accept (WTA) to forgo parking through daily second price auctions. The FlexPass-Plus study proved a direct measurement of the population-level demand curve. From the longitudinal auction data, Individual-level WTA curves are built up. Performance-based incentive schemes are then designed.

Bio:
Born and raised in Nanjing, China, Dounan Tang earned his bachelor's degree in civil engineering from Southeast University in his hometown. He came to UC Berkeley to pursue his Ph.D. degree in Transportation Engineering. He is also enrolled in the M.A. program in the Department of Economics at Berkeley. Dounan’s research interests include conducting field experiments to measure and change travel behavior, particularly to reduce employee parking by monetary incentives.

The Search for a Sustainable Source of Federal and State Transportation Revenue: Gas taxes or mileage fees?, Oct 27

11 min 23 sec ago
For almost a century, gas taxes have generated substantial revenues for building and operating the transportation system, but these user fees are unlikely to keep serving that function as well in the future. This talk will examine the relative benefits of raising the gas tax versus adopting a new "mileage fee." After presenting a policy evaluation framework specific to transportation revenue sources, Professor Agrawal will present a quick sketch analysis of gas taxes and mileage fees. Then, the talk will delve deeper into the questions of political feasibility and public opinion, presenting findings from her original public opinion research on gas taxes and mileage fees, including the results of eight annual national surveys and an NCHRP synthesis study.


Bio: Asha Weinstein Agrawal is Director of MTI’s National Transportation Finance Center at San José State University, and Professor of Urban and Regional Planning (also at SJSU). Her research agenda is guided by a commitment to the principles of sustainability and equity: what planning and policy tools can communities adopt to encourage environmentally-friendly travel and improve accessibility for people struggling with poverty or other disadvantages? She has explored this question most deeply through two substantive areas, transportation finance policy and the travel behavior of pedestrians, cyclists, and transit riders. She also works in the area of urban history and is currently Chair of the Transportation Research Board’s Committee on Transportation History. Dr. Agrawal earned a B.A. from Harvard University in Folklore and Mythology, an M.Sc. from the London School of Economics and Political Science in Urban and Regional Planning, and a Ph.D. from the University of California, Berkeley, in City and Regional Planning. More information about her work, including publications, is at
www.sjsu.edu/urbanplanning/facstaff/AshaWeinsteinAgrawal/

Optimal Coordination of Connected and Autonomous Cars in Smart Cities, Nov 3

11 min 23 sec ago
Connectivity and autonomy of cars and roadside infrastructure is expected to transform urban transportation. For instance, cooperation between intelligent cars and intersection control units can harmonize traffic flow, increase energy efficiency, and enhance safety and passenger comfort.

This talk takes a closer look at some of these potentials. In one experimental case study, we demonstrate that coordination of movement of human-driven connected cars with traffic signals reduces idling and fuel consumption. In this case study we successfully “crowd-source” traffic signal timings from statistical patterns in motion of connected vehicles in the city of San Francisco. We also discuss the communication protocols and backend computing architecture that we have in place for collecting and processing vehicular data in near real-time and relaying the processed information to subscribing vehicles.

Benefits are expected to be higher with autonomous cars where absence of a human driver promises more predictability and precise control. In the second part of this talk, we formulate a novel intersection control concept for autonomous cars in smart cities that does not rely on conventional traffic signals. Arrivals of autonomous cars at the intersection are optimally scheduled to reduce delay. The benefits are shown in simulated scenarios and also in a vehicle-in-the-loop experiment.

Biographical Sketch:
Ardalan Vahidi is a Professor of Mechanical Engineering at Clemson University, South Carolina. He received his Ph.D. in mechanical engineering from the University of Michigan, Ann Arbor, in 2005, M.Sc. in transportation safety from George Washington University, Washington, DC, in 2002, and B.S. and M.Sc. in civil engineering from Sharif University, Tehran in 1996 and 1998, respectively. In 2012–2013 he was a Visiting Scholar at the University of California, Berkeley. He has also held scientific visiting positions at BMW Technology Office in California, and at IFP Energies Nouvelles, in France. His research is at the intersection of energy, vehicular systems, and automatic control. His recent publications span topics in alternative vehicle powertrains, intelligent transportation systems, and connected and autonomous vehicle technologies.

How Ride-Sharing Technology is Impacting Transportation in Africa: The case of Uber in Nairobi, Nov 17

11 min 23 sec ago
As ride-sharing technology companies enter the African Continent to tap into its market of one billion people, African cities are adopting and responding to the technology in different ways. Looking at Kenya, a country that prides itself as the tech hub of Africa, there has been wide-spread adoption of Uber — but not without significant opposition from certain transportation stakeholders. What are the factors that have influenced this adoption of ride-sharing technology as a mode of transportation in Nairobi, and how has government responded to opposition to the disrupter in the transport industry? In addition, are there factors that are influencing Uber’s impact on the workforce in Kenya as compared to the US?


Biography
Kagure Wamunyu is a Sustainable Urban Development PhD student at Oxford University doing her research on the impact of ride-sharing technology on transportation in Africa. Kagure has worked in the ride-sharing industry where she joined Uber in 2015 as the operations and logistics manager for Nairobi and rose to Country Manager for Uber in Kenya, a position she held before leaving the company in July 2017.

Kagure also currently works as the Senior Director for Strategy for East Africa for Bridge International Schools, a social impact organization that seeks to provide access to education to the low income in Africa and Asia. She also previously worked as a research assistant at the Institute of transportation Research and Education and North Carolina State University.

Kagure is a Berkeley MCP alumna (class of 2015) and holds a BSC in Civil Engineering from NC State and a BA in Mathematics from Meredith College.

Transportation Futures: Integrating transportation, land use, and environmental planning for sustainable urban development, Dec 1

11 min 23 sec ago
Concerns about global warming, economic disparity, social exclusion, and threatened shortages of water and energy have emerged on policy agendas throughout the world, and the need for aggressive intervention along all fronts has become increasingly apparent. In this presentation, Elizabeth Deakin will discuss policies and practices linking transportation, land use, and environmental planning with the objective of achieving sustainable development - a healthy environment, a thriving economy, and a more equitable and inclusive society. She will examine how regional and local planning practices are changing to reflect new demographic and economic trends and environmental and social challenges, and review and assess best practices and emerging scenarios on how to improve the performance of cities’ and regions’ transport systems, ranging from investments in transit and nonmotorized travel modes, to mixed use and higher density urban development, to radically transformed vehicles and transportation systems enabled by emerging technological innovations.



Elizabeth Deakin is Professor Emerita of City and Regional Planning and Urban Design at the University of California, Berkeley, where she taught and carried out research on transportation, land use and environmental planning for three decades. She served as the Director of the UC Transportation Center from 1999-2009 and as Co-Director of the Global Metropolitan Studies Center from 2004-2009. She has written nearly 300 journal articles, book chapters, papers and research reports during her academic career. She is co-author of the handbook, Residential Street Design and Traffic Control (with Wolf Homburger, Peter Bosselman, Daniel Smith and Bert Beukers), published in English and Italian, and co-editor of the 2017 edited volume, High Speed Rail and Sustainability (with Blas Perez Henriquez). She has advised numerous city, state, and national governments on transportation, urban development, and environmental issues and has served as an appointed official for state and local government. Deakin holds SB and SM degrees from the Massachusetts Institute of Technology and a JD from Boston College Law School. In 2010 she was awarded an Honorary PhD from the Royal Institute of Technology in Stockholm (KTH) for her contributions to research in the fields of transportation and the environment. She also was awarded an honorary professorship at Shandong University in the PRC in recognition of her contributions to sustainable development planning for Chinese cities. Currently, she is conducting research, advising students, and editing Access magazine at UC.

School of Public Health's State of the School, Oct 3

11 min 23 sec ago
Dean Bertozzi invites all SPH affiliates to join him for a presentation of topics relevant to the School.

ITS Seminar: The Interesting and Risky Way in Which Transport System Risk Is Managed, Sep 29

11 min 23 sec ago
The evolution of thinking around transport system risk management provides an excellent case study on how implicit and explicit assumptions can drive methodological development. Once methodological momentum builds, often these previously embedded assumptions are long forgotten, yet continue to drive methodology. It is fruitful to revisit and question these assumptions from time to time. This talk discusses the history of transport network safety management methodology from theoretical and empirical perspectives. It highlights some of the critical assumptions made along the way, and describes how and why these assumptions might be hindering further development and real improvement in our ability to prevent crashes. The recommended directions for future methodological development are identified and discussed.

View from the Top: Lisa Davis, Sep 28

11 min 23 sec ago
Never before have energy systems faced a greater transformation than today, and never before was energy – primarily electricity – so important. With a growing global population, rising economic output and, above all, ever more uses of electricity, the demand for electricity is expected to nearly double by mid-century. At the same time, the demand for greater system sustainability and affordable energy is for many countries also a prerequisite for security. The energy transitions taking place throughout the world show that many countries are seeking new solutions. And never before have there been so many possibilities. Technical possibilities that make the system more secure and sustainable as well as new business models for greater economic efficiency. Digitalization will further accelerate the merging of power generation, transmission, distribution and consumption and spawn changes extending far beyond the energy sector itself, increasing the importance of energy even more. In the end, electricity will become the global source of energy.


Lisa Davis is a Member of the Managing Board of Siemens AG. Appointed to the Siemens board in August 2014, she is responsible for the company’s Oil & Gas, Power Generation and Power Services businesses as well as for the Region North America and South America. In addition, she has been named Chair and CEO of Siemens Corporation, USA in January 2017.

After graduating with a degree in chemical engineering from the University of California, Berkeley, she joined Exxon in 1986 and subsequently worked for Exxon Corporation before moving to Texaco from 1988 to 1998. That year, Davis joined Royal Dutch Shell in the USA, holding executive positions prior to transferring to Shell in the UK. Upon returning to the USA in 2008, she served as Vice President, Sales and Marketing Lubricants & Bulk Fuels Americas before being appointed Executive Vice President, Strategy, Portfolio & Alternative Energy at Royal Dutch Shell, UK, in 2012.

Rational Design of Advanced Materials for Lithium-Ion Batteries and Beyond, Oct 6

11 min 23 sec ago
High-performance and cost-effective rechargeable batteries are key to the success of electric vehicles and large-scale energy storage systems. Extensive research has thus focused on the development of new high-energy electrodes that can store more lithium at faster rates with stable cycle performance. However, the current status of lithium batteries still remains far below the demands required for the proposed applications.

In this presentation, we introduce our approaches to address this issue, which include the discovery of new energy storage mechanism in the electrode for lithium ion batteries, bio-mimetic batteries and some developments made in the field of post lithium ion batteries in our group.

TS-04 Improving Safety at Intersections, Nov 29-Dec 1

11 min 23 sec ago
About 65 percent of all crashes in urban areas and 40 percent of those in rural areas occur at or near intersections or driveways. Safety improvements at these locations have always been a priority and pose a challenge for most transportation agencies in California. Because crashes are typically complex events, a great diversity of mitigation measures have been tried with varying degrees of success, including the modern round-about. This workshop offers a range of guidelines, solutions, and strategies for reducing conflicts and crashes at intersection locations. Safety improvements appropriate for both urban and rural areas are explored.

TS-03 Roadside Safety and Guardrail Systems, Dec 5

11 min 23 sec ago
This one-day course offers students an opportunity to learn how to design more "forgiving" roadways-those that minimize hazardous installations and reduce potential for death, injury, and property damage associated with crashes. Instruction focuses on best practices in the design and evaluation of common roadside structures such as guardrails, concrete barriers, signs, light pole supports, and work-zone devices. This course is based on the AASHTO Roadside Design Guide, Caltrans Standard Plans, and the National Cooperative Highway Research Program (NCHRP) Report 350: Recommended Procedures for the Safety Performance Evaluation of Roadside Features. Video presentations illustrate various safety devices and impact attenuators, to help students understand the dynamics of roadside crashes.

IDM-04 Asphalt Pavement Maintenance and Rehabilitation, Dec 7

11 min 23 sec ago
Asphalt pavement is a major component of our transportation system. Transportation agencies at the city and county level can maximize the value of their huge investment in streets and roads by using proper pavement maintenance strategies. This course provides a solid working knowledge of the most common pavement maintenance and preservation practices. Basic principles, best field practices and safety issues are covered. This course is based on Day 3 of the IDM-03 Asphalt Pavement Materials, Design, Construction & Maintenance and is offered as a low-cost alternative to the three-day course IDM-03.