Events

Syndicate content
Upcoming Events
Updated: 1 hour 52 sec ago

2017 California Transportation Planning Conference, May 3-5

May 5, 2017 - 11:39pm
The California Department of Transportation (Caltrans), in partnership with the Institute of Transportation Studies (ITS) at University of California, Berkeley present the: 2017 California Transportation Planning Conference, Partnering for Sustainable Transportation: Meeting the Challenge Now and Into the Future.

This three-day conference will provide attendees the opportunity to interact with transportation practitioners and decision-makers, exchange ideas and learn about emerging technologies and advancements in transportation planning from national, state, and local experts. The conference will focus on themes around sustainability and how we can partner to meet the challenges facing us now and into the future as required by California legislation and influenced by funding constraints.

Increasing Freeway Capacity by Efficiently Timing its Nearby Arterial Traffic Signals, May 5

May 5, 2017 - 11:39pm
Abstract: The objective of freeway on-ramp metering is to regulate the entry of vehicles to prevent capacity drop on the freeway mainline. However, the nearby arterial traffic signals facilitating freeway access fail to recognize that the metered on-ramps can be oversaturated due to the flow restriction and limited storage. Instead, the arterial traffic signals provide long cycles in order to maximize arterial capacity during peak hours. This often leads to large platoons of arterial traffic advancing to the on-ramps and thus queue spillback on the surface street. As a result, most ramp meters employ a “queue override” feature that is intended to prevent the on-ramp queue from obstructing traffic conditions along the adjacent surface streets. The override is triggered whenever a sensor placed at the entrance of the on-ramp detects a potential queue spillover of the on-ramp vehicles on the adjacent surface streets, and releases the queue into the freeway. The queue override reduces the effectiveness of ramp metering during the time of highest traffic demand, when the ramp metering is most needed. A field test undertaken at a freeway bottleneck in San Jose, California shows that queue override may reduce the freeway capacity by 10%. Significant benefits can be realized by reducing cycle length to prevent on-ramp oversaturation and thereby queue override. A method for determining the appropriate cycle length was developed and the improved signal timing was tested through simulation. The results show that the proposed approach prevented queue override and reduced both freeway and arterial delays.
Bio: David Kan is a Ph.D. candidate in Civil and Environmental Engineering in the Transportation Engineering program. He received his M.S. in Civil and Environmental Engineering at UC Berkeley in May 2014, and his B.S. in Civil and Environmental Engineering at University of Illinois Urbana Champaign in May 2013. His research interests include traffic operations, intelligent transportation systems, and connected and automated vehicles. He will be joining PATH as a postdoctoral researcher in May 2017.

2017 California Transportation Planning Conference, May 3-5

May 4, 2017 - 10:42pm
The California Department of Transportation (Caltrans), in partnership with the Institute of Transportation Studies (ITS) at University of California, Berkeley present the: 2017 California Transportation Planning Conference, Partnering for Sustainable Transportation: Meeting the Challenge Now and Into the Future.

This three-day conference will provide attendees the opportunity to interact with transportation practitioners and decision-makers, exchange ideas and learn about emerging technologies and advancements in transportation planning from national, state, and local experts. The conference will focus on themes around sustainability and how we can partner to meet the challenges facing us now and into the future as required by California legislation and influenced by funding constraints.

2017 California Transportation Planning Conference, May 3-5

May 3, 2017 - 11:45pm
The California Department of Transportation (Caltrans), in partnership with the Institute of Transportation Studies (ITS) at University of California, Berkeley present the: 2017 California Transportation Planning Conference, Partnering for Sustainable Transportation: Meeting the Challenge Now and Into the Future.

This three-day conference will provide attendees the opportunity to interact with transportation practitioners and decision-makers, exchange ideas and learn about emerging technologies and advancements in transportation planning from national, state, and local experts. The conference will focus on themes around sustainability and how we can partner to meet the challenges facing us now and into the future as required by California legislation and influenced by funding constraints.

Type 2070 Traffic Signal Controller, May 1-2

May 2, 2017 - 11:34pm
Many California cities have started using the Type 2070 Advanced Traffic Controller (2070 ATC), which is also used for advanced transportation system applications. This hands-on course provides working knowledge about the capabilities, uses, and operations of the Type 2070 controller, as well as how to program signal timing plans into the controller. The course covers all key topics ranging from controller hardware, module options, diagnostic tools, field applications of the 2070 ATC, implementation issues, to how to upgrade from Type 170 or NEMA controllers. The course combines lectures with classroom exercises, case-studies, and hands-on controller labs.

Type 2070 Traffic Signal Controller, May 1-2

May 1, 2017 - 11:33pm
Many California cities have started using the Type 2070 Advanced Traffic Controller (2070 ATC), which is also used for advanced transportation system applications. This hands-on course provides working knowledge about the capabilities, uses, and operations of the Type 2070 controller, as well as how to program signal timing plans into the controller. The course covers all key topics ranging from controller hardware, module options, diagnostic tools, field applications of the 2070 ATC, implementation issues, to how to upgrade from Type 170 or NEMA controllers. The course combines lectures with classroom exercises, case-studies, and hands-on controller labs.

Bus Rapid Transit: Planning, Design, and Operations, Apr 18-27

April 27, 2017 - 11:36pm
Bus rapid transit (BRT) is an adaptable, cost-effective mode of public transportation suitable for deployment in both larger and smaller cities worldwide. The optimal BRT functions like light rail transit, but on existing streets as a premium express urban bus transit service. BRT can either supplement or replace existing bus networks, as well as either supplement or substitute for light rail transit services. BRT offers the opportunity to expand urban and regional transit networks for less cost and in less time than rail transit alternatives. Additionally, BRT can serve as a medium-term alternative to rail transit until demand for the more expensive but higher capacity mode is proven. There are many versions of BRT deployment, but best practices include: install bus rapid transit on dedicated bus lanes with traffic signal preemption capabilities at intersections, distinctive vehicles, enhanced bus stop amenities, wider stop spacing than convention urban bus transit, platform-level boarding, and unique branding. BRT corridors need to be evaluated carefully with attention to population and employment density and growth forecasts, right of way availability, ridership and cost compared to transit modal alternatives, and ease or difficulty in implementation. Successful BRT lines and networks build transit mode share by offering a time-competitive alternative to the private motor vehicle.