Researchers interested in the assessment of substance use trajectories, and predictors of change, have several data analysis options. These include, among others, generalized estimating equations and latent growth curve modeling. One difficulty in the assessment of substance use, however, is the nature of the variables studied. Although counting instances of use (e.g., the number of cigarettes smoked per day) would seem to be the best option, such data present difficulties in that the distribution of these variables is not likely normal. Count variables often follow a Poisson distribution,...