This paper shows how the recent breakthroughs in reinforcement learning (RL) that have enabled robots to learn to play arcade video games, walk, or assemble colored bricks, can be used to perform other tasks that are currently at the core of engineering cyberphysical systems. We present the first use of RL for the control of systems modeled by discretized non-linear partial differential equations (PDEs) and devise a novel algorithm to use non-parametric control techniques for large multi-agent systems. Cyberphysical systems (e.g., hydraulic channels, transportation systems, the energy grid...