Regret is often experienced for difficult, important, and accountable choices. Consequently, we hypothesize that random regret minimization (RRM) may better describe evacuation behavior than traditional random utility maximization (RUM). However, in many travel related contexts, such as evacuation departure timing, specifying choice sets can be challenging due to unknown attribute levels and near-endless alternatives, for example. This has implications especially for estimating RRM models, which calculates attribute-level regret via pairwise comparison of attributes across all alternatives...