Introduction

Abstract: 

This book focuses on control problems for conservation laws, i.e., equations of the type: ∂tu+∂xf(u)=0ut+(f(u))x=0,$$\displaystyle  \partial _t\, u + \partial _x\, f(u) = 0 \qquad  u_t+(f(u))_x=0,  $$where u:ℝ+×ℝ→ℝn$$u:\mathbb {R}^+\times \mathbb {R} \to \mathbb {R}^n$$is the vector of conserved quantities and f:ℝn→ℝn$$f:\mathbb {R}^n\to \mathbb {R}^n$$is the flux. Most results will be given for the scalar case (n = 1), but we will present few results valid in the general case.

Author: 
Bayen, Alexandre
Monache, Maria Laura Delle
Garavello, Mauro
Goatin, Paola
Piccoli, Benedetto
Bayen, Alexandre
Publication date: 
January 1, 2022
Publication type: 
Book Chapter
Citation: 
Bayen, A., Monache, M. L. D., Garavello, M., Goatin, P., & Piccoli, B. (2022). Introduction. In A. Bayen, M. L. Delle Monache, M. Garavello, P. Goatin, & B. Piccoli (Eds.), Control Problems for Conservation Laws with Traffic Applications: Modeling, Analysis, and Numerical Methods (pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-030-93015-8_1